1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

General Description

The MAX5035 easy-to-use, high-efficiency, high-voltage, step-down DC-DC converter operates from an input voltage up to 76 V and consumes only $350 \mu \mathrm{~A}$ quiescent current at no load. This pulse-width modulated (PWM) converter operates at a fixed 125 kHz switching frequency at heavy loads, and automatically switches to pulse-skipping mode to provide low quiescent current and high efficiency at light loads. The MAX5035 includes internal frequency compensation simplifying circuit implementation. The device uses an internal low-on-resistance, high-voltage, DMOS transistor to obtain high efficiency and reduce overall system cost. This device includes undervoltage lockout, cycle-by-cycle current limit, hiccup mode output short-circuit protection, and thermal shutdown.
The MAX5035 delivers up to 1A output current. External shutdown is included, featuring $10 \mu \mathrm{~A}$ (typ) shutdown current. The MAX5035A/B/C versions have fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 12 V , respectively, while the MAX5035D features an adjustable output voltage from 1.25 V to 13.2 V .

The MAX5035 is available in space-saving 8-pin SO and 8-pin plastic DIP packages and operates over the industrial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications
Consumer Electronics
Industrial
Distributed Power

Typical Operating Circuit

- Wide 7.5V to 76V Input Voltage Range
- Fixed (3.3V, 5V, 12V) and Adjustable (1.25V to 13.2V) Versions
- 1A Output Current
- Efficiency Up to 94\%
- Internal 0.4 Ω High-Side DMOS FET
- $350 \mu \mathrm{~A}$ Quiescent Current at No Load, 10 A A Shutdown Current
- Internal Frequency Compensation
- Fixed 125kHz Switching Frequency
- Thermal Shutdown and Short-Circuit Current Limit
- 8-Pin SO and PDIP Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)
MAX5035AUSA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	3.3
MAX5035AUPA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP	
MAX5035BUSA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	5.0
MAX5035BUPA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP	
MAX5035CUSA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	ADJ
MAX5035CUPA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP	
MAX5035DUSA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	
MAX5035DUPA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP	

Pin Configuration

TOP VIEW

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON} / \overline{O F F}}=+12 \mathrm{~V}\right.$, IOUT $=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	VIN	MAX5035A		7.5		76.0	V
		MAX5035B		7.5		76.0	
		MAX5035C		15		76	
		MAX5035D		7.5		76.0	
Undervoltage Lockout	UVLO				5.2		V
Output Voltage	Vout	MAX5035A	$\mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V}$ to 76 V , IOUT $=20 \mathrm{~mA}$ to 1 A	3.185	3.3	3.415	V
		MAX5035B	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V} \text { to } 76 \mathrm{~V}, \\ & \mathrm{IOUT}=20 \mathrm{~mA} \text { to } 1 \mathrm{~A} \end{aligned}$	4.85	5.0	5.15	
		MAX5035C	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \text { to } 76 \mathrm{~V}, \\ & \mathrm{IOUT}=20 \mathrm{~mA} \text { to } 1 \mathrm{~A} \end{aligned}$	11.64	12	12.36	
Feedback Voltage	$V_{\text {FB }}$	$\mathrm{V}_{\text {IN }}=7.5 \mathrm{~V}$ to 76V, MAX5035D		1.192	1.221	1.250	V
Efficiency	η	$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}, \mathrm{MAX5035} \mathrm{~A}$			86		\%
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}, \mathrm{MAX5035B}$			90		
		$\mathrm{V}^{\prime} \mathrm{N}=24 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}, \mathrm{MAX5035C}$			94		
		$\begin{aligned} & V_{I N}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \operatorname{ILOAD}=0.5 \mathrm{~A}, \\ & \text { MAX5035D } \end{aligned}$			90		
Quiescent Supply Current	IQ	$\mathrm{V}_{\mathrm{FB}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}$ to 76V, MAX5035A			350	460	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{FB}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}$ to 76V, MAX5035B			350	460	
		$\mathrm{V}_{\mathrm{FB}}=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V}$ to 76V, MAX5035C			350	460	
		$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}, \mathrm{MAX5035D}$			350	460	

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=+12 \mathrm{~V}, \mathrm{~V}_{\text {ON }} / \overline{\text { OFF }}=+12 \mathrm{~V}\right.$, IOUT $=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Shutdown Current	ISHDN	$\mathrm{V}_{\text {ON/OFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=7.5 \mathrm{~V}$ to 76 V		10	45	$\mu \mathrm{A}$
Peak Switch Current Limit	ILIM	(Note 1)		1.80	2.40	A
Switch Leakage Current	IOL	$\mathrm{V}_{\text {IN }}=76 \mathrm{~V}, \mathrm{~V}_{\text {ON }} / \overline{\mathrm{OFF}}=0 \mathrm{~V}, \mathrm{~V}_{\text {LX }}=0 \mathrm{~V}$		1		$\mu \mathrm{A}$
Switch On-Resistance	RDS(ON)	ISWITCH = 1A		0.40	0.80	Ω
PFM Threshold	IPFM	Minimum switch current in any cycle	55	85	110	mA
FB Input Bias Current	IB	MAX5035D	-12	+0.01	+12	nA
ON/OFF CONTROL INPUT						
ON/OFF Input-Voltage Threshold	VON/OFF	Rising trip point	1.53	1.69	1.85	V
ON/ $\overline{O F F}$ Input-Voltage Hysteresis	$\mathrm{V}_{\text {HYST }}$			100		mV
ON/ $\overline{\text { OFF }}$ Input Current	ION/OFF	$\mathrm{V}_{\text {ON/OFF }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}$		10	150	nA
OSCILLATOR						
Oscillator Frequency	fosc		109	125	135	kHz
Maximum Duty Cycle	DMAX	MAX5035D		95		\%
VOLTAGE REGULATOR						
Regulator Output Voltage	VD	V IN $=8.5 \mathrm{~V}$ to $76 \mathrm{~V}, \mathrm{IL}=0 \mathrm{~mA}$	6.9	7.8	8.8	V
Dropout Voltage		$7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 8.5 \mathrm{~V}, \mathrm{IL}=1 \mathrm{~mA}$		2.0		V
Load Regulation	$\Delta \mathrm{VD} / \Delta \mathrm{l} \mathrm{VD}$	0 to 5 mA		150		$\mathrm{mV} / \mathrm{mA}$
PACKAGE THERMAL CHARACTERISTICS						
Thermal Resistance (Junction to Ambient)	$\theta_{\text {JA }}$	SO package (JEDEC 51)		170		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DIP package (JEDEC 51)		110		
THERMAL SHUTDOWN						
Thermal-Shutdown Junction Temperature	TSH			+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	THYST			20		${ }^{\circ} \mathrm{C}$

Note 1: Switch current at which current limit is activated.

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

$\left(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~V}\right.$ ON/OFF $=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit, if applicable.)

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~V}\right.$ ON/OFF $=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit, if applicable.)

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}} / \overline{\mathrm{OFF}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit, if applicable.)

B: Iout, 500mA/div, 0.1A T0 1A

$400 \mu \mathrm{~s} / \mathrm{div}$
A: Vout, 200mV/div, AC-COUPLED
B: Vout, $500 \mathrm{~mA} /$ div, 0.1 A TO 0.5 A

$4 \mu \mathrm{~s} / \mathrm{div}$
A: SWITCH VOLTAGE (LX PIN), 20V/div, (VIN = 48V) B: INDUCTOR CURRENT, $500 \mathrm{~mA} / \mathrm{div}\left(I_{\text {OUt }}=1 \mathrm{~A}\right)$

MAX5035DUSA LOAD-TRANSIENT RESPONSE

400 $\mu \mathrm{s} / \mathrm{div}$
A: VOUT, 200mV/div, AC-COUPLED
B: Vout, $500 \mathrm{~mA} /$ div, 0.5 A T0 1A

$4 \mu \mathrm{~s} / \mathrm{div}$
A: SWITCH VOLTAGE (LX PIN), 20V/div, (VIN = 48V) B: INDUCTOR CURRENT, 200mA/div (lout $=100 \mathrm{~mA}$)

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

$\left(\mathrm{V}\right.$ IN $=12 \mathrm{~V}, \mathrm{~V}$ ON/ $\overline{\mathrm{OFF}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. See the Typical Application Circuit, if applicable.)

A: SWITCH VOLTAGE (LX PIN), 20V/div, $\mathrm{V}_{\text {IN }}=48 \mathrm{~V}$ B: INDUCTOR CURRENT, 200mA/div (lout $=0$)

A: $V_{\text {on/ }} / \overline{\text { FFF }}, 2 \mathrm{~V} / \mathrm{div}$
$\mathrm{B}: \mathrm{V}_{\text {OUT }}, 2 \mathrm{~V} / \mathrm{div}$

A: $V_{0 N / \overline{O F F}, 2 V / d i v}$
B: Vout, 2V/div

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

PIN	NAME	FUNCTION
1	BST	Boost Capacitor Connection. Connect a 0.1 μ F ceramic capacitor from BST to LX.
2	VD	Internal Regulator Output. Bypass VD to GND with a 0.1 μ F ceramic capacitor.
3	SGND	Internal Connection. SGND must be connected to GND.
4	FB	Output Sense Feedback Connection. For fixed output voltage (MAX5035A, MAX5035B, MAX5035C), connect FB to Vout. For adjustable output voltage (MAX5035D), use an external resistive voltage-divider to set VOUT. VFB regulating set point is 1.22V.
5	ON/OFF	Shutdown Control Input. Pull ON/OFF low to put the device in shutdown mode. Drive ON/OFF high for normal operation.
6	GND	Ground
7	VIN	Input Voltage. Bypass VIN to GND with a low ESR capacitor as close to the device as possible.
8	LX	Source Connection of Internal High-Side Switch

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Detailed Description

The MAX5035 step-down DC-DC converter operates from a 7.5 V to 76 V input voltage range. A unique volt-age-mode control scheme with voltage feedforward and an internal switching DMOS FET provides high efficiency over a wide input voltage range. This pulsewidth modulated converter operates at a fixed 125 kHz switching frequency. The device also features automatic pulse-skipping mode to provide low quiescent current and high efficiency at light loads. Under no load, the MAX5035 consumes only $350 \mu \mathrm{~A}$, and in shutdown mode, consumes only $10 \mu \mathrm{~A}$. The MAX5035 also features undervoltage lockout, hiccup mode output shortcircuit protection, and thermal shutdown.

Shutdown Mode

Drive ON/ $\overline{O F F}$ to ground to shut down the MAX5035. Shutdown forces the internal power MOSFET off, turns off all internal circuitry, and reduces the VIN supply current to $10 \mu \mathrm{~A}$ (typ). The ON/OFF rising threshold is 1.69 V (typ). Before any operation begins, the voltage at ON/OFF must exceed 1.69 V (typ). The ON/OFF input has 100 mV hysteresis.

Undervoltage Lockout (UVLO)

Use the ON/ $\overline{O F F}$ function to program the UVLO threshold at the input. Connect a resistive voltage-divider from VIN to GND with the center node to ON/OFF as shown in Figure 1. Calculate the threshold value by using the following formula:

$$
V_{\mathrm{UVLO}(\mathrm{TH})}=\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \times 1.85 \mathrm{~V}
$$

The minimum recommended $\mathrm{VUVLO}(\mathrm{TH})$ is $6.5 \mathrm{~V}, 7.5 \mathrm{~V}$, and 13 V for the output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 12 V , respectively. The recommended value for R2 is less than $1 \mathrm{M} \Omega$.
If the external UVLO threshold-setting divider is not used, an internal undervoltage lockout feature monitors the supply voltage at VIN and allows operation to start when VIN rises above 5.2 V (typ). This feature can be used only when VIN rise time is faster than 2ms. For slower VIN rise time, use the resistive-divider at ON/OFF.

Boost High-Side Gate Drive (BST)

Connect a flying bootstrap capacitor between LX and BST to provide the gate-drive voltage to the high-side N -channel DMOS switch. The capacitor is alternately charged from the internally regulated output voltage VD and placed across the high-side DMOS driver. Use a
$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$ ceramic capacitor located as close to the device as possible.
On startup, an internal low-side switch connects LX to ground and charges the BST capacitor to VD. Once the BST capacitor is charged, the internal low-side switch is turned off and the BST capacitor voltage provides the necessary enhancement voltage to turn on the high-side switch.

Thermal Overload Protection
The MAX5035 features integrated thermal overload protection. Thermal overload protection limits total power dissipation in the device, and protects the device in the event of a fault condition. When the die temperature exceeds $+160^{\circ} \mathrm{C}$, an internal thermal sensor signals the shutdown logic, turning off the internal power MOSFET and allowing the IC to cool. The thermal sensor turns the internal power MOSFET back on after the IC's die temperature cools down to $+140^{\circ} \mathrm{C}$, resulting in a pulsed output under continuous thermal overload conditions.

Applications Information

Setting the Output Voltage
The MAX5035A/B/C have preset output voltages of 3.3 V , 5.0 V , and 12 V , respectively. Connect FB to the preset output voltage (see the Typical Operating Circuit).
The MAX5035D offers an adjustable output voltage. Set the output voltage with a resistive voltage-divider connected from the circuit's output to ground (Figure 1). Connect the center node of the divider to FB. Choose R4 less than $15 k \Omega$, then calculate R3 as follows:

$$
\mathrm{R} 3=\frac{\left(\mathrm{V}_{\text {OUT }}-1.22\right)}{1.22} \times \mathrm{R} 4
$$

Figure 1. Adjustable Output Voltage

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

The MAX5035 features internal compensation for optimum closed-loop bandwidth and phase margin. With the preset compensation, it is strongly advised to sense the output immediately after the primary LC.

Inductor Selection

The choice of an inductor is guided by the voltage difference between VIN and VOUT, the required output current, and the operating frequency of the circuit. Use an inductor with a minimum value given by:

$$
L=\frac{\left(V_{\text {IN }}-V_{\text {OUT }}\right) \times D}{0.2 \times \text { IOUTMAX } \times \mathrm{F}_{\text {SW }}}
$$

where:

$$
\mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{N}}}
$$

IOUTMAX is the maximum output current required, and fsw is the operating frequency of 125 kHz . Use an inductor with a maximum saturation current rating equal to at least twice the peak output current of the circuit. Use inductors with low DC resistance for higher efficiency.

Selecting a Rectifier

The MAX5035 requires an external Schottky rectifier as a freewheeling diode. Connect this rectifier close to the device using short leads and short PC board traces. Choose a rectifier with a continuous current rating greater than the highest expected output current. Use a rectifier with a voltage rating greater than the maximum expected input voltage, VIN. Use a low forward-voltage Schottky rectifier for proper operation and high efficiency. Avoid higher than necessary reverse-voltage Schottky rectifiers that have higher forward-voltage drops. Use a Schottky rectifier with forward-voltage

Table 1. Diode Selection

VIN $^{\prime}$ (V)	DIODE PART NUMBER	MANUFACTURER
7.5 to 36	$15 M Q 040 \mathrm{~N}$	IR
	B240A	Diodes, Inc.
	B240	Central Semiconductor
	MBRS240, MBRS1540	ON Semiconductor
7.5 to 56	30BQ060	IR
	B360A	Diodes, Inc.
	CMSH3-60	Central Semiconductor
	MBRD360, MBR3060	ON Semiconductor
	50SQ100, 50SQ80	MBRM5100

drop $\left(\mathrm{V}_{\mathrm{FB}}\right)$ less than 0.45 V at $+25^{\circ} \mathrm{C}$ and maximum load current to avoid forward biasing of the internal body diode (LX to ground). Internal body diode conduction may cause excessive junction temperature rise and thermal shutdown. Use Table 1 to choose the proper rectifier at different input voltages and output current.

Input Bypass Capacitor

The discontinuous input current waveform of the buck converter causes large ripple currents in the input capacitor. The switching frequency, peak inductor current, and the allowable peak-to-peak voltage ripple that reflects back to the source dictate the capacitance requirement. The MAX5035 high switching frequency allows the use of smaller value input capacitors.
The input ripple is comprised of $\Delta \mathrm{V}_{\mathrm{Q}}$ (caused by the capacitor discharge) and $\Delta \mathrm{V}$ ESR (caused by the ESR of the capacitor). Use low-ESR aluminum electrolytic capacitors with high ripple-current capability at the input. Assuming that the contribution from the ESR and capacitor discharge is equal to 90% and 10%, respectively, calculate the input capacitance and the ESR required for a specified ripple using the following equations:

$$
\begin{aligned}
\mathrm{ESR}_{\mathrm{IN}} & =\frac{\Delta \mathrm{V}_{\mathrm{ESR}}}{\left(\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}\right)} \\
\mathrm{C}_{\mathrm{IN}} & =\frac{\mathrm{I}_{\mathrm{OUT}} \times \mathrm{D}(1-\mathrm{D})}{\Delta \mathrm{V}_{\mathrm{Q}} \times \mathrm{f}_{\mathrm{SW}}}
\end{aligned}
$$

where

$$
\begin{gathered}
\Delta_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times V_{\text {OUT }}}{V_{\text {IN }} \times f_{\text {SW }} \times \mathrm{L}}, \\
\mathrm{D}=\frac{V_{\text {OUT }}}{V_{\text {IN }}}
\end{gathered}
$$

IOUT is the maximum output current of the converter and fSW is the oscillator switching frequency (125 kHz). For example, at V IN $=48 \mathrm{~V}$, VOUT $=3.3 \mathrm{~V}$, the ESR and input capacitance are calculated for the input peak-topeak ripple of 100 mV or less yielding an ESR and capacitance value of $80 \mathrm{~m} \Omega$ and $51 \mu \mathrm{~F}$, respectively.
Low-ESR, ceramic, multilayer chip capacitors are recommended for size-optimized application. For ceramic capacitors, assume the contribution from ESR and capacitor discharge is equal to 10% and 90%, respectively.
The input capacitor must handle the RMS ripple current without significant rise in temperature. The maximum capacitor RMS current occurs at about 50% duty cycle.

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Ensure that the ripple specification of the input capacitor exceeds the worst-case capacitor RMS ripple current. Use the following equations to calculate the input capacitor RMS current:

$$
I_{\mathrm{CRMS}}=\sqrt{\mathrm{IPRMS}^{2}-\mathrm{I}_{\mathrm{AVGIN}}{ }^{2}}
$$

where

$$
\begin{aligned}
& I_{\text {PRMS }}=\sqrt{\left(I_{P K}^{2}+I_{D C}{ }^{2}+\left(I_{P K} \times I_{D C}\right)\right) \times \frac{D}{3}} \\
& I_{\text {AVGIN }}=\frac{V_{O U T} \times I_{O U T}}{V_{I_{N}} \times \eta} \\
& I_{\text {PK }}=I_{\text {OUT }}+\frac{\Delta I_{\mathrm{L}}}{2}, I_{D C}=I_{\text {OUT }}-\frac{\Delta I_{\mathrm{L}}}{2} \\
& \text { and } D=\frac{V_{O U T}}{V_{I N}}
\end{aligned}
$$

IPRMS is the input switch RMS current, IAVGin is the input average current, and η is the converter efficiency.
The ESR of aluminum electrolytic capacitors increases significantly at cold temperatures. Use a $1 \mu \mathrm{~F}$ or greater value ceramic capacitor in parallel with the aluminum electrolytic input capacitor, especially for input voltages below 8V.

Output Filter Capacitor

The worst-case peak-to-peak and RMS capacitor ripple current, allowable peak-to-peak output ripple voltage, and the maximum deviation of the output voltage during load steps determine the capacitance and the ESR requirements for the output capacitors.
The output capacitance and its ESR form a zero, which improves the closed-loop stability of the buck regulator. Choose the output capacitor so the ESR zero frequency (fz) occurs between 20 kHz to 40 kHz . Use the following equation to verify the value of fz . Capacitors with $100 \mathrm{~m} \Omega$ to $250 \mathrm{~m} \Omega$ ESR are recommended to ensure the closedloop stability, while keeping the output ripple low.

$$
\mathrm{f}_{\mathrm{z}}=\frac{1}{2 \times \pi \times \mathrm{C}_{\text {OUT }} \times \mathrm{ESR}_{\text {OUT }}}
$$

The output ripple is comprised of $\Delta \mathrm{VOQ}$ (caused by the capacitor discharge) and Δ VoESR (caused by the ESR of the capacitor). Use low-ESR tantalum or aluminum electrolytic capacitors at the output. Assuming that the contribution from the ESR and capacitor discharge equal 80% and 20% respectively, calculate the output
capacitance and the ESR required for a specified ripple using the following equations:

$$
\begin{gathered}
\mathrm{ESR}_{\mathrm{OUT}}=\frac{\Delta \mathrm{V}_{\mathrm{OESR}}}{\Delta \mathrm{I}_{\mathrm{L}}} \\
\mathrm{C}_{\mathrm{OUT}} \approx \frac{\Delta \mathrm{I}_{\mathrm{L}}}{2.2 \times \Delta \mathrm{V}_{\mathrm{OQ}} \times \mathrm{f}_{\mathrm{SW}}}
\end{gathered}
$$

The MAX5035 has an internal soft-start time (tss) of $400 \mu \mathrm{~s}$. It is important to keep the output rise time at startup below tss to avoid output overshoot. The output rise time is directly proportional to the output capacitor. Use $68 \mu \mathrm{~F}$ or lower capacitance at the output to control the overshoot below 5\%.
In a dynamic load application, the allowable deviation of the output voltage during the fast-transient load dictates the output capacitance value and the ESR. The output capacitors supply the step load current until the controller responds with a greater duty cycle. The response time (tRESPONSE) depends on the closedloop bandwidth of the converter. The resistive drop across the capacitor ESR and capacitor discharge cause a voltage droop during a step load. Use a combination of low-ESR tantalum and ceramic capacitors for better transient load and ripple/noise performance. Keep the maximum output voltage deviation above the tolerable limits of the electronics being powered. Assuming a 50\% contribution each from the output capacitance discharge and the ESR drop, use the following equations to calculate the required ESR and capacitance value:

$$
\begin{gathered}
\mathrm{ESR}_{\mathrm{OUT}}=\frac{\Delta \mathrm{V}_{\mathrm{OESR}}}{\mathrm{I}_{\mathrm{STEP}}} \\
\mathrm{C}_{\text {OUT }}=\frac{\mathrm{I}_{\mathrm{STEP}} \times \mathrm{t}_{\mathrm{RESPONSE}}}{\Delta \mathrm{~V}_{\mathrm{OQ}}}
\end{gathered}
$$

where ISTEP is the load step and tRESPONSE is the response time of the controller. Controller response time is approximately one-third of the reciprocal of the closed-loop unity-gain bandwidth, 20kHz typically.

PC Board Layout Considerations
Proper PC board layout is essential. Minimize ground noise by connecting the anode of the Schottky rectifier, the input bypass capacitor ground lead, and the output filter capacitor ground lead to a single point ("star"

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

ground configuration). A ground plane is required. Minimize lead lengths to reduce stray capacitance, trace resistance, and radiated noise. In particular, place the Schottky rectifier diode right next to the
device. Also, place BST and VD bypass capacitors very close to the device. Use the PC board copper plane connecting to VIN and LX for heat sinking.

Application Circuits

Figure 2. Fixed Output Voltages
Table 2. Typical External Components Selection (Circuit of Figure 2)

VIN (V)	Vout (V)	Iout (A)	EXTERNAL COMPONENTS
7.5 to 76	3.3	0.5	$\begin{aligned} & \text { CIN }=68 \mu \mathrm{~F}, \text { Panasonic, EEVFK2A680Q } \\ & \text { COUT }=68 \mu \mathrm{~F}, \text { Vishay Sprague, 594D686X_010C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=384 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=50 \text { SQ100, IR } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
7.5 to 76	3.3	1	
7.5 to 76	5	0.5	$\begin{aligned} & \text { CIN }=68 \mu F, \text { Panasonic, EEVFK2A680Q } \\ & \text { COUT }=68 \mu \mathrm{~F}, \text { Vishay Sprague, 594D68X_010C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=384 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=50 \text { SQ100, IR } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
7.5 to 76	5	1	
15 to 76	12	1	```CIN \(=68 \mu F\), Panasonic, EEVFK2A680Q Cout \(=15 \mu \mathrm{~F}\), Vishay Sprague, 594D156X0025C2T CBST \(=0.1 \mu \mathrm{~F}, 0805\) \(R 1=1 \mathrm{M} \Omega \pm 1 \%, 0805\) \(R 2=139 \mathrm{k} \Omega \pm 1 \%, 0805\) D1 = 50SQ100, IR L1 \(=220 \mu \mathrm{H}\), Coilcraft Inc., DO5022P-224```

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Table 2. Typical External Components Selection (Circuit of Figure 2) (continued)

VIN (V)	Vout (V)	Iout (A)	EXTERNAL COMPONENTS
9 to 14	3.3	1	$\begin{aligned} & \text { CIN }=220 \mu F, \text { Panasonic, EEVFK1E221P } \\ & \text { COUT }=68 \mu \mathrm{~F}, \text { Vishay Sprague, 594D686X_010C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=274 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=\text { B220, Diodes Inc. } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
	5	1	$\begin{aligned} & \text { CIN }=220 \mu F, \text { Panasonic, EEVFK1E221P } \\ & \text { COUT }=68 \mu \mathrm{~F}, \text { Vishay Sprague, 594D686X_010C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=274 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=\text { B220, Diodes Inc. } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
18 to 36	3.3	1	$\begin{aligned} & \text { CIN }=220 \mu F, \text { Panasonic, EEVFK1H221P } \\ & \text { COUT }=68 \mu F, \text { Vishay Sprague, 594D686X_010C2T } \\ & \text { CBST }=0.1 \mu \text { F, 0805 } \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=130 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=\text { MBRS2040, ON Semiconductor } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
	5	1	$\begin{aligned} & \text { CIN }=220 \mu F, \text { Panasonic, EEVFK1H221P } \\ & \text { COUT }=68 \mu \mathrm{~F}, \text { Vishay Sprague, 594D686X_010C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=130 \mathrm{k} \Omega \pm 1 \%, 0805 \\ & \text { D1 }=\text { MBRS2040, ON Semiconductor } \\ & \text { L1 }=100 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-104 } \end{aligned}$
	12	1	$\begin{aligned} & \text { CIN }=220 \mu \mathrm{~F}, \text { Panasonic, EEVFK1H221P } \\ & \text { COUT }=15 \mu \mathrm{~F}, \text { Vishay Sprague, 594D156X_0025C2T } \\ & \text { CBST }=0.1 \mu \mathrm{~F}, 0805 \\ & \text { R1 }=1 \mathrm{M} \Omega \pm 1 \%, 0805 \\ & \text { R2 }=130 \mathrm{~K} \Omega \pm 1 \% \text {, } 0805 \\ & \text { D1 }=\text { MBRS2040, ON Semiconductor } \\ & \text { L1 }=220 \mu \mathrm{H}, \text { Coilcraft Inc., DO5022P-224 } \end{aligned}$

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

19 Table 3. Component Suppliers

SUPPLIER	PHONE	FAX	WEBSITE
AVX	$843-946-0238$	$843-626-3123$	www.avxcorp.com
Coilcraft	$847-639-6400$	$847-639-1469$	www.coilcraft.com
Diodes Incorporated	$805-446-4800$	$805-446-4850$	www.diodes.com
Panasonic	$714-373-7366$	$714-737-7323$	www.panasonic.com
Sanyo	$619-661-6835$	$619-661-1055$	www.sanyo.com
TDK	$847-803-6100$	$847-390-4405$	www.component.tdk.com
Vishay	$402-563-6866$	$402-563-6296$	www.vishay.com

*LOCATE PTC AS CLOSE TO HEAT-DISSIPATING COMPONENTS AS POSSIBLE.

Figure 3. Load Temperature Monitoring with ON/OFF (Requires Accurate VIN)

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Figure 4. Dual-Sequenced DC-DC Converters (Startup Delay Determined by R1/R1', Ct/Ct' and Rt/Rt')

TRANSISTOR COUNT: 4344
PROCESS: BiCMOS

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

